
Optimised renormalisation group transformations of lattice spin models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 4891

(http://iopscience.iop.org/0305-4470/20/14/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 13:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 4891-4900. Printed in the UK 

Optimised renormalisation group transformations of lattice 
spin models 

Adam Bennett 
Department of Physics, University of Edinburgh, James Clerk Maxwell Building, The King 
Buildings, Edinburgh EH9 332, UK 

Received 4 February 1987 

Abstract. The optimisation of real space renormalisation group transformations is explored 
in the framework of series expansions. A block-spin transformation (in addition to decima- 
tion) is constructed which exactly maps the one-dimensional nearest-neighbour Ising model 
onto itself. The same construction can also be applied to the y-state Potts model. In higher 
dimensions, similar optimisation can be achieved only if the weight function has interactions 
of range comparable to those generated in the series expansion. 

1. Introduction 

A renormalisation group ( RG) transformation consists of a coarse graining procedure 
accompanied by a dilatation. In real space the RG transformation is described by 

exp( -~ ’ [a ’ ] )  = ~ [ a ’ ,  a ]  e x p ( - ~ [ a ] )  
config. 

m 

where H[U] is the Hamiltonian for the original spin system and H’[a’]  is an effective 
Hamiltonian for a system containing a fewer number of ‘block spins’. (The Hamil- 
tonians contain the temperature dependence, llk-7’’ implicitly.) The sum is over all 
configurations of the original spins and W[a’,  a ]  is the weight function for the 
transformation. 

The coarse graining procedure (i.e. the form of W[a’, a ] )  is not uniquely defined 
and may be chosen, to some degree, for convenience. The transformation must, 
however, preserve the partition function if the long-ranged behaviour is not to be lost. 
Furthermore the weight function must be sufficiently local so that the transformation 
is practicable (we will see that this is an important constraint in discussing the 
two-dimensional Ising model). A non-local weight function may also produce a singular 
transformation which would distort the long-ranged behaviour. Changing the form of 
the weight function will cause a shift in the position of the fixed point Hamiltonian 
within the space of coupling constants. However, provided the weight functions 
preserves the correct long-range behaviour the fixed point will only be shifted in the 
direction of redundant operators (Wegner 1976). It is particularly advantageous if the 
redundant operators are chosen so that the fixed point Hamiltonian is as close as 
possible to the initial Hamiltonian since this eliminates much of the transient flow 
needed to reach the critical point. Optimisation to eliminate this transient flow is very 
important, for instance, in the Monte Carlo renormalisation group ( MCRG) where large 
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systematic errors occur when the blocked spin Hamiltonian is far from the fixed point 
(see, for example, Pawley et a1 1984). 

Swendsen (1984b) has suggested it may be possible to optimise a renormalisation 
group transformation so that a nearest-neighbour Ising model is mapped onto itself. 
This is the best optimisation we could wish for; however, we will see it does not always 
preserve the large-scale physics correctly. To find an optimised RG transformation 
Swendsen proposed using a multi-parameter weight function of the form: 

The product is over all the blocked spin lattice sites. The R,,,.[a] are functions, defined 
at a blocked site n‘ ,  whose values depend on the original spins in the neighbourhood 
of that site. Thus, for example, Ro,,.[a] is the ‘majority rule’ operator defined by: 

-1 if2 U,<O 
It t1 

while R,,,.[a] depends on the spins in the nearest-neighbour block, etc. The pa are 
a set of parameters to be chosen for convenience. If po is made infinite and all the 
other parameters are set to zero we obtain the usual majority rule transformation. 
Swendsen noted that the fixed point Hamiltonian for a majority rule transformation 
has a nearest-neighbour coupling constant which is larger than all the other couplings 
(Swendsen 1984a). He, therefore, suggested that if po was made infinite with the other 
parameters chosen appropriately it may be possible to make the nearest-neighbour 
Ising model the fixed point of the renormalisation group transformation. (This is 
equivalent to using a sophisticated tie-breaker.) I have found that allowing po to vary 
can be important in finding the most local, optimised, weight functions. Swendsen 
discussed his procedure in the context of MCRG. Although this is a computationally 
very efficient technique it does not give much insight into the physical limitations of 
optimising an RG transformation. 

To understand this problem I have examined the optimisation of RG transformations 
for some simple, one- and two-dimensional, lattice spin models in the framework of 
high-temperature expansions. In the following section I will derive a block-spin 
transformation which maps a nearest-neighbour spin-f king model onto itself. Ironi- 
cally, the weight function for this transformation is of the form suggested by Swendsen 
but where po varies with temperature and all other pa are set to zero. This transformation 
is then generalised to allow for larger block sizes and finally adapted for the q-state 
Potts model. For all the cases discussed in this section the new coupling constants are 
related to the old ones in the same way as predicted by the equivalent decimation, 

In § 3, we discuss the problems which arise when Swendsen’s transformation is 
applied to the two-dimensional king model. In this case the weight function is found 
to be far from local. This may cause the long distance physics to be corrupted at each 
application of the RG transformation. Such a transformation would give incorrect 
predictions for the critical exponents. The details of the calculation for the two- 
dimensional case are given in the appendix. 
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2. One-dimensional models 

We begin this section by considering optimised RG transformations for one-dimensional 
spin-; Ising models. The simplest RG transformation we can apply to this model is 
decimation. A generalisation of this procedure, introduced by Kadanoff, which is 
applicable to a larger class of models is given by 

w[U’, U] = n ;( 1 + TfTL,U2,,,) (2.1) 
n ’  

where the U:,  are the new spin variables and the u2,,, form the set of original spins 
which lie on even lattice sites only. T is a parameter which must be chosen so that at 
the critical point: T = 2(d-2t7)’2 . This condition arises because equation (2.1) is linear 
in the sense that the correlation functions for the block spins are linearly related to 
the correlation functions of the original spins. For the one-dimensional Ising model 
d - 2 + 7 = 0, thus, T must be one at the pseudo-critical temperature ( T = 0). If T = 1 
at all temperatures then equation (2.1) becomes 

n’ 

This is just decimation. It is well known that decimation maps a one-dimensional 
nearest-neighbour Ising model with coupling K onto another nearest-neighbour Ising 
model with coupling strength K ‘  satisfying w ‘  = w 2 ,  where w ’  = tanh K ’  and w = tanh K .  
However, if T is allowed to vary with temperature then new, non-local, couplings 
would be generated away from the fixed point. Thus decimation can be considered 
as the exactly optimised form of the more general RG transformation of equation (2.1). 
For Ising models in higher dimensions d - 2 + 7 Z 0 so the weight function of equation 
(2.1) must be used. However, this gives poor numerical results because of the large 
transient flow required in reaching the neighbourhood of the fixed point (see, for 
example, Wilson 1975). A better coarse graining procedure which shows less transient 
flow uses a block spin which depends on all the spins in the block (see, for example, 
Subbarao 1976). 

It is useful to examine one-dimensional RG transformations which treat all the 
spins on an equal footing. The simplest one-dimensional block-spin operator which 
does this takes the form R 0 , n , [ ~ ] = ( ~ 2 n , + ~ 2 n , + 1 ) / 2 .  Notice that this has the same 
property as the majority rule operator described in equation (1.3). Using this block-spin 
operator we can construct a one-parameter weight function with an analogous form 
to Kadanoff’s decimation: 

(2.3) w[ U’,  U] = n f( 1 + TU’,,Ro,,,[ U]). 
n ’  

Notice that this transformation is exactly of the form suggested by Swendsen (equation 
(1.2)) but with tanh po = T and all other p m  set to zero. Once again we require that at 
the pseudo-critical point T = 1. 

To find the effective Hamiltonian H’[u’]  we first expand exp{-H[u]} as a high- 
temperature series; 

M 

e x p ( - H [ ~ ] )  =cosh M K  (1 + O U ~ U ~ + ~ )  (2.4) 
i = l  

where we have assumed we have M spin with periodic boundary conditions ( ( T ~ + ~  = U , )  
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and w = tanh K .  Then: 
M / 2  

config. n ' = l  
e x p ( - ~ ' [ a ' ] ) =  fl f ( l + ~ a ~ ~ ~ , , , . [ a ] )  e x p ( - ~ [ a ] )  

expanding the weight function and using the high-temperature expansion of equation 
(2.4): 

U 

exp( -H'[  a']) = 2-"12 cosh M K  

U 

M 

x n (1 +wc,(+,+1) 
, = I  

using the properties of the spin; 2 ,  ai = 0, Z ,  a? = 2, Zu2, a2,,Ro,,.[a] = 1, etc, we can 
evaluate the sum over configurations to give 

exp(-H'[a'])=2M'2cosh M K  ~ + + T ~ ( O + ~ W ~ + W ~ ) C  U',O',.+~ 
n '  

Thus we see that, in general, H ' [ a ' ]  will contain non-local interactions. However, if 
we choose 7 to be 

2J;; 
7s- 

l+W 

then the right-hand side of equation (2.5) has the form, up to a multiplicative constant, 
of a high-temperature expansion for a nearest-neighbour Ising model with a coupling 
strength K'  given by U'= w 2  (U' and w are given above). Furthermore, this is true at 
all orders and thus this is an exact result. 

Notice that at the pseudo-critical temperature ( T = 0): 2&/( 1 + U )  = 1 and the 
transformation is just a majority rule transformation with a random tie-breaker. If 
T = 1 at all temperatures then the critical fixed point Hamiltonian is again that of a 
nearest-neighbour Ising model, but new couplings will be generated as the system 
flows away from the critical point. This flow away from the fixed point can be 
constrained to lie in the direction of the nearest-neighbour coupling alone by insisting 
T varies with temperature according to equation (2.6). In this case we have the unusual 
situation of the RG transformation having an explicit temperature dependence. In the 
high-temperature limit the weight function becomes equal to a constant ( W [  a', a] = 

and hence the new spins do not depend on any of the old spins in this limit. 
We can extend this mapping to larger block sizes. For a block of N spins the 

operator Ro,,.[a] takes the form Ro.n.[a] = ( X N ( n t - , l < g s N n ,  a , ) / N .  To make the new 
Hamiltonian take the form of a nearest-neighbour Ising model T must now satisfy the 
equation: 

N 2 w  
w + 2 w 2 +  , . .+  NwN+(N-l)WN+l+ . . . +  W Z N - I  

2 - M / 2 )  

72 = (2.7) 
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We obtain the same result as a decimation where we keep every Nth spin, namely 
w'  = w . At the critical temperature the transformation is not a majority rule but rather 
the block spin will be in the same direction as the majority of the spins with some 
probability which depends on the size of the majority. Again in the high-temperature 
limit the weight function is just equal to a constant (this time: W [ d ,  a ]  = 2-M"). 

We can construct similar transformations for other one-dimensional discrete spin 
models. For example we can easily extend the above analysis to the q-state Potts 
model with a nearest-neighbour coupling strength 2 K .  We can construct a high- 
temperature expansion in exactly the way as we did for the Ising model except with 
w = tanh K replaced by v = (eZK - l)/(e'" + q - 1). The analogous weight function to 
that for the Ising model (equation (2.3)) is 

W[", a ] = n  q-l( l+rPO,n.[a ' ,  a ] )  (2.8) 

where PO,np[~ ' ,  a ]  = (q8,+u2n + q8cA,m2n + l  - 2 )  is analogous to the term U ~ . R ~ , ~ . [ ( + ]  and 
has the property, X'conRg,,m, Po,,.[ a', a]  = 0, which is required to preserve the partition 
function. The new Hamiltonian will have the form of a nearest-neighbour Potts model 
provided T takes the value: 

N 

n' 

2 J u  
l + u '  

r=- (?.9) 

Again the new coupling constant is related to the old one by the decimation result 
U'= U* where U = (eZK'- l) /(e2"'+ q - 1) and v is given above. The Ising model result 
is just a special case of this with q = 2 .  

3. Higher dimensions 

We have found that optimisation is very fruitful in one dimension. It is therefore 
natural to try to extend these ideas to higher dimensions where they may be of 
considerable importance. However, in one dimension optimisation is relatively straight- 
forward because the correlation functions scales very simply (e.g. for the Ising model 
(a( N ) ,  a(0)) = U " ) .  In two dimensions the correlation functions contain complicated 
combinatoric coefficients which arise because there are now many different paths 
between two spins on the lattice. Therefore to exactly optimise the transformation we 
must also include the non4ocal operators (R,, , , [  a ] ;  a > 0) in Swendsen's weight 
function. 

Using a high-temperature expansion we can construct a weight function, order by 
order, which removes all but the nearest-neighbour interaction. Thus, for example, 
using a 2 x 2 block spin on a square lattice, majority rule will generate a next-to-nearest- 
neighbour interaction between diagonally connected block spins at second order and 
a next-to-nearest-neighbour interaction between block spins lying along the same lattice 
direction at third order (see the appendix for details). It is not possible to remove 
both these interactions simultaneously using po and p1 alone; we must include at least 
one non-local operator (e.g. R3, , , [a]  which depends on spins in the blocks displaced 
from n' by (2 ,0) ,  (-2,0), etc) with a coupling strength ( p 3 )  of the same order as the 
next-to-nearest-neighbour correlation. In general we find that to obtain an exactly 
optimised transformation we must add non-local operators with coupling strengths of 
the same range as the correlation functions. Furthermore, we can construct many 
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different exactly optimised weight functions, each describing a different behaviour 
close to the critical point (i.e. different critical exponents). In contrast to the one- 
dimensional situation no one of these weight functions is significantly more local than 
any of the others. 

There is no evidence that a local optimised RG transformation will emerge, although 
the possibility cannot be ruled out that at the critical point the high-order terms conspire 
to cancel the leading order terms to make the transformation local. However, this 
calculation does demonstrate that the renormalisation group flow away from the fixed 
point cannot be constrained to lie in the direction of a nearest-neighbour Ising model 
only, as this would require a weight function of the same range as the correlation 
function. This conclusion has also been noted by M Luscher (in a private communica- 
tion to Swendsen (see Swendsen 1986)) who pointed out that the nearest-neighbour 
Ising model has an isotropic correlation function only close to its critical point so that 
a transformation which confines the flow of the fixed point along the direction of the 
nearest-neighbour Ising model would break the symmetry of the correlation function. 

After completing this work Fisher and Randeria (1986) pointed out that the fixed 
point cannot be made to lie anywhere on the critical surface, but is in fact unique up 
to displacements in the direction of redundant operators. If then the nearest-neighbour 
Ising model is displaced from the fixed point by irrelevant scaling operators then it 
would only be possible to make the nearest-neighbour Ising model a fixed point by 
using a singular (non-local) transformation-this was pointed out by Swendsen (1986) 
in reply to Fisher and Randeria. There is no indication from my work that anything 
other than this is occurring. 

Acknowledgments 

I wish particularly to thank Professor D J Wallace who has helped me with many 
useful discussions and suggestions. I would also like to thank Dr A D Bruce who read 
the manuscript and suggested many improvements. Finally I must thank SERC for 
their support. 

Appendix 

In this section the calculation for the two-dimensional king model is outlined. This 
calculation is done in the framework of high-temperature expansions. It is sufficient 
to look at the first few terms only. 

For clarity we will look at a specific example of a square lattice with M lattice 
sites and periodic boundary conditions. Furthermore we will choose to divide the 
lattice up into 2 x 2 block spins as shown in figure 1. Although the detail of the 
following analysis depends on these choices, similar arguments to those presented will 
hold for different choices of lattice geometry and block spin. 

Swendsen’s weight function, (1.2), is not in a very convenient form for doing an 
analytical calculation since it is highly non-linear. A more convenient weight function 
to use is 

n’ \ a 
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Figure 1. A square lattice divided into 2 x 2 block spins. 

(Note that the operators are no longer linear functions of the original spins. Hence 
we do not have any conditions on T~ as we did in the one-dimensional case.) Equation 
( A l )  can be regarded as an expansion of the weight function (1.2) where (provided 
T~ is small) T ,  = p1 + O(p:) ,  etc. The operators, R,,.[a], can be single-spin or multi-spin 
operators. The multi-spin operators are required to correct the many-spin correlation 
functions. Thus, for example, to make the four-spin correlations have the form of a 
nearest-neighbour Ising model we must introduce three-spin operators. In the following 
it is sufficient to restrict our attention to single-spin operators which we will denote 
by a Latin index (i.e. Ro,nJ[c+]). We define the nearest-neighbour operator, R l , n . [ a ] ,  
to be: 

where pa are lattice vectors as shown in figure 1 .  The other single-spin operators can 
be defined likewise. There will be two next-to-nearest-neighbour operators: R 2 J  U] 

which is the sum of the block-spin operators (Ro,n , [a])  displaced from n' by (1, l ) ,  
( - 1 ,  l) ,  ( 1 ,  - 1 )  and ( - 1 ,  -1); and R3,n,[c+] which is the sum ofthe block-spin operators 
displaced from n' by (2,O) and its three symmetric partners. 

To find the effective Hamiltonian we expand exp{-H[~]}  as a high-temperature 
series: 

M 2  

exp(-H[al)  =cosh 2 M K  n ( 1  +~u,o,.+,,). (A3) 
n ' = l  o = l  

It is useful to interpret this as a graphical expansion where every term represents a 
lattice with each link either occupied (with weight w )  or unoccupied. The single-spin 
operators, Ro.n.[c+],  can be regarded as sources and the whole weight function as a 
sum of lattices where each block-spin site is either occupied by a source (with weight 
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7,) or unoccupied. The sum over configuration has the effect of removing all graphs 
containing an open chain of occupied links, or an unconnected source. 

Using this expansion we can now construct exp{ - H ' [  d]}. The nearest-neighbour 
term a ' , ~ ' , . ~ ,  will have a contribution from the graph shown in figure 2(a) of 

~ ~ 8 ~ 2 n , ~ O , n ~ [ u I ) ~  (A4) 

where ( O [ I T ] ) = ~ - ~  2cconfig.,o O[(+]. Form our definition of Ro,,.[u] given in (1.3) we 
find 

(u2n~Ro,n'[al) = i (A51 

(Since we have defined all the single-spin operators as a sum of block-spin operators 
this relationship is true for all single-spin operators which overlap with a spin at some 
lattice site.) There are in fact two graphs which contribute to the nearest-neighbour 
coefficient at lowest order (the one shown in figure 2(a) and its partner). At the next 
order there are six graphs which contribute (figure 2(b) shows one of these). There 
is also a term contributing to the nearest-neighbour coefficient which comes from the 
overlap of the Ro,,.[cr] operator with the R,,,.[a] operator. Thus the lowest couple 
of terms contributing to the new nearest-neighbour coefficient are 

( 2 ~  +~w~)~~((T~~'RO,~'[(TI)~ + ~ O ~ ~ ( R O , ~ ' + , [ U I R ~ , ~ , [ ~ I ) .  (A61 

(Ro,n,+,[~IR1,ni~I)  = ( -47)  

Using the definition of R1,nf[a]  given in equation (A2) we find 

Again this is true for any pair of single-spin operators which overlap with each other 
at some block site. 

There are two next-to-nearest-neighbour terms generated by this transformation, 
namely W ~ O ~ , + , ~ + , , ( ~ . ,  1 pb)  and ~&a',,+~,. Graphs contributing to these terms are 
shown in figures 3(a)  and 3(b), respectively. The lowest-order contributions to the 

W' 
( 0 )  

I bl 

Figure 2. Typical graphs contributing to the nearest-neighbour term U ; , U ~ , , + ~ ~  at (a )  first 
order and ( b )  second order. 

l a )  ( b )  

Figure 3. Typical graphs contributing to the two next-to-nearest-neighbour terms (a )  
QX.+,,,+,,~ and ( b )  ~h++z,l . 
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If we wish to make the effective Hamiltonian have the form of a nearest-neighbour 
Ising model then exp{ - H ' [  a']} must take the form: 

2 2 

exp(-H'[a']) = C 1 + w'  C C ~k;,+,~ + 2 ~ ' ~  C ~ ~ ~ ~ ; ~ + p a + p ~ + l  
n '  a = l  n '  a = l  

Clearly we can achieve this in a number of ways as we have two conditions and four 
parameters. We would like to choose the parameters so that the weight function is as 
local as possible. However, we cannot choose both r2 and r3 to be zero. One choice 
of parameters that will exactly optimise the transformation at leading order is 

T o = $  

For this choice of parameters the new coupling satisfies the equation w ' =  
i w + & 2 + O ( ~ 3 ) .  Thus at this order the fixed point coupling is given by w c = $ .  The 
exponent v is given by 

In( dw '/ dw ) = 
U =  ' = 0.585. 

In 2 

This should be compared with the exact results U ,  = 0.414 and v = 1. 
Another set of parameters which would optimise the transformation equally well is 

To = 4&/ 3 w ' l 2  

In this case the new coupling is given by U ' =  w2+3w3+0(w4) .  The fixed point for 
this transformation is given by w ,  = 0.434 and critical exponent v = 1.36. 

If we extend this calculation to higher orders we find that we must again add terms 
in the weight function of the same order as the correlation function. This is not just 
true for 2 x 2  block spins or square lattices but will hold for many differeni: RG 

transformations on regular two-dimensional lattices. 
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